60 research outputs found

    Molecular evolution of the H6 subtype influenza a viruses from poultry in eastern China from 2002 to 2010

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although extensive data demonstrates that the majority of H6 duck isolates belonged to a single H6N2 virus lineage with a single gene constellation in southern China from 2000 to 2005, the prevalence of H6N2 virus in poultry in Eastern China is largely unknown.</p> <p>Results</p> <p>Epidemiology revealed that H6N2 viruses were the most frequently detected influenza subtypes in live bird markets from 2002 to 2008 in Eastern China, but from 2009 onwards, they were replaced with novel H6N6 viruses. We phylogenetically and antigenically analyzed 42 H6 viruses isolated mainly in domestic ducks from 2002 to 2010 in Eastern China. Surprisingly, none of these isolates grouped with the previously described H6N2 viruses which belonged to a single H6N2 virus lineage with a single gene constellation in domestic ducks in southern China from 2000 to 2005. Two distinct hemagglutinin lineages were identified and they all underwent frequent reassortment with multiple virus subtypes from the natural gene pool, but few reassortants were persistent or prevalent.</p> <p>Conclusions</p> <p>Five subtypes of H6 influenza viruses (H6N1, H6N2, H6N5, H6N6 and H6N8) cocirculated in Eastern China, which form a significant part of the natural influenza virus reservoir in domestic ducks, and significant viral reassortment is still ongoing in this species.</p

    Novel Reassortant Highly Pathogenic Avian Influenza (H5N5) Viruses in Domestic Ducks, China

    Get PDF
    In China, domestic ducks and wild birds often share the same water, in which influenza viruses replicate preferentially. Isolation of 2 novel reassortant highly pathogenic avian influenza (H5N5) viruses from apparently healthy domestic ducks highlights the role of these ducks as reassortment vessels. Such new subtypes of influenza viruses may pose a pandemic threat

    Joint communication and computation resource scheduling of a UAV-assisted mobile edge computing system for platooning vehicles

    Get PDF
    Connected and autonomous vehicles (CAVs) are recently envisioned to provide a tremendous social impact, while they put forward a much higher requirement for both vehicular communication and computation capacities to process resource-intensive applications. In this paper, we study unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) for a platoon of wireless power transmission (WPT)-enabled vehicles. Our objective is to maximize the system-wide computation capacity under both communication and computation resource constraints. We incorporate the coupled effects of the platooning vehicles and the flying UAV, air-to-ground (A2G) and ground-to-air (G2A) communications, onboard computing and energy harvesting into a joint scheduling optimization model of communication and computation resources. To tackle the resulting optimization problem, we propose a successive convex programming method based on a second-order convex approximation, in which feasible search directions are obtained by solving a sequence of quadratic programming subproblems and used to generate feasible points that can approach a local optimum. We also theoretically prove the feasibility and convergence of the proposed method. Moreover, simulation results are provided to validate the effectiveness of our proposed method and demonstrate its superior performance over other conventional schemes

    Generation and Comprehensive Analysis of Host Cell Interactome of the PA Protein of the Highly Pathogenic H5N1 Avian Influenza Virus in Mammalian Cells

    Get PDF
    Accumulating data have identified the important roles of PA protein in replication and pathogenicity of influenza A virus (IAV). Identification of host factors that interact with the PA protein may accelerate our understanding of IAV pathogenesis. In this study, using immunoprecipitation assay combined with liquid chromatography-tandem mass spectrometry, we identified 278 human cellular proteins that might interact with PA of H5N1 IAV. Gene Ontology annotation revealed that the identified proteins are highly associated with viral translation and replication. Further KEGG pathway analysis of the interactome profile highlighted cellular pathways associated with translation, infectious disease, and signal transduction. In addition, Diseases and Functions analysis suggested that these cellular proteins are highly related with Organismal Injury and Abnormalities and Cell Death and Survival. Moreover, two cellular proteins (nucleolin and eukaryotic translation elongation factor 1-alpha 1) identified both in this study and others were further validated to interact with PA using co-immunoprecipitation and co-localization assays. Therefore, this study presented the interactome data of H5N1 IAV PA protein in human cells which may provide novel cellular target proteins for elucidating the potential molecular functions of PA in regulating the lifecycle of IAV in human cells

    Hierarchical Deep Cosegmentation of Primary Objects in Aerial Videos

    No full text

    Roles of 3-Deoxy-d-manno-2-Octulosonic Acid Transferase from Moraxella catarrhalis in Lipooligosaccharide Biosynthesis and Virulence

    No full text
    Lipooligosaccharide (LOS), a major outer membrane component of Moraxella catarrhalis, is a possible virulence factor in the pathogenesis of human infections caused by the organism. However, information about the roles of the oligosaccharide chain from LOS in bacterial infection remains limited. Here, a kdtA gene encoding 3-deoxy-d-manno-2-octulosonic acid (Kdo) transferase, which is responsible for adding Kdo residues to the lipid A portion of the LOS, was identified by transposon mutagenesis and construction of an isogenic kdtA mutant in strain O35E. The resulting O35EkdtA mutant produced only lipid A without any core oligosaccharide, and it was viable. Physicochemical and biological analysis revealed that the mutant was susceptible to hydrophobic reagents and a hydrophilic glycopeptide and was sensitive to bactericidal activity of normal human serum. Importantly, the mutant showed decreased toxicity by the Limulus amebocyte lysate assay, reduced adherence to human epithelial cells, and enhanced clearance in lungs and nasopharynx in a mouse aerosol challenge model. These data suggest that the oligosaccharide moiety of the LOS is important for the biological activity of the LOS and the virulence capability of the bacteria in vitro and in vivo. This study may bring new insights into novel vaccines or therapeutic interventions against M. catarrhalis infections

    Modelling of Outer and Inner Film Oil Pressure for Floating Ring Bearing Clearance in Turbochargers

    No full text
    Floating ring bearing is widely used in turbochargers to undertake the extreme condition of high rotating speed and high operating temperature. It is also the most concerned by the designers and users alike due to its high failure rate and high maintenance cost. Any little clearance change may result in oil leakage, which in turn cause blue smoke or black smoke according to leakage types. However, there is no condition monitoring of this bearing because it is almost impossible to measure the clearance especially the inner clearance, in which the inner oil film directly bears the high speed rotation. In stead of measuring clearance directly, this paper has proposed a method that uses film pressure as a measure to monitor the bearing clearance and its variation. A non-linear mathematical model is developed by using Reynolds equations with non-linear oil film pressure. A full description of the outer and inner film is provided along both axial and radial directions. A numerical simulation is immediately carried out. Variable clearance changes are investigated using the mathematical model. Results show the relationship between clearance and film pressure
    corecore